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Abstract. We propose an algorithm to compute the p-part of the class num-

ber for a number field K, provided K is totally real and an abelian extension

of the rational field Q, and p is any prime. On fields of degree 4 or higher,
this algorithm is theoretically faster than classical algorithms that compute

the entire class number with improvement increasing with larger field degrees.

1. Introduction

The class group of a number field K, which is the quotient of the group of
invertible ideals modulo principal ideals, is one of the fundamental invariants of
the field. It is of core importance to almost all multiplicative problems of number
fields, therefore the ability to compute the class group of a number field K is an
important task in algebraic number theory. Whilst there are conjectures about the
structures of class groups, its computation is difficult and exisiting approaches to
obtain provable results are slow. These either assume some generalised Riemann
hypothesis, thus delivering results that are not proven, or make use of the Minkowski
bound, which is computationally infeasible for most examples.

There are, however, circumstances where only the p-part of the class group is
required. This is especially important in certain areas in Iwasawa theory and elliptic
curves, where they are used in descents to find rational points on elliptic curves.
Here, it would be useful to have an algorithm that could efficiently compute only
the p-part.

Whilst there has been approaches to this problem in the past, including attempts
by Gras and Gras [4], much progress has been made in the past fifteen years,
including most recently work by Aoki and Fukuda [1], which presented an algorithm
for the case when p does not divide the field degree of K and p 6= 2. None of these
algorithms, though, can deal with all fields K which are abelian extensions of the
rational field Q, despite a theoretical result from Leopoldt showing that this is
possible [5, Section 5.5].

In this paper we propose a new algorithm to compute the p-part of the class
number for any totally real abelian number field K and prime p. The result is
unconditional and can be used to verify the the p-part of the class group. Just
as classical algorithms use the class number formula for their computation, this
algorithm makes use of the p-adic version of the formula. Whilst this may not be
the most efficient way to approach the problem, this does present a unconditional
method that runs in polynomial time of the conductor of the field.

The computation of the p-part of the class number, apart from few special cases,
is usually done through a computation of the structure of the full class group us-
ing a variation of Buchmann’s subexponential algorithm. The method essentially
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proceeds in two steps: first, a (small) finite set of prime ideals is chosen. The al-
gorithm then proceeds to determine the subgroup of the class group generated by
those ideals. In a second step the choice of the initial ideals is verified by checking
all prime ideals of norm bounded by some bound. Depending on the application,
the bound can be of size O((log |D|)2), where D is the discriminant of the number
field, in case the Riemann hypotheses are assumed or of size O(

√
|D|) for uncon-

ditional results. As a consequence, in non-trivial examples, the running time is
overwhelmingly dominated by the verification step. In this paper, we propose a
new method that can verify the p-part of the class number in time polynomial in
O( n−1

√
|D|) for cyclic fields of prime degree n. This allows an asymptotically much

faster unconditional verification than any previously known method. At the end of
the paper, we produce examples showing the approach to be practical as well.

2. Computing p-adic L-functions

We start by reviewing the necessary tools from p-adic fields and p-adic analysis
that we are going to need. Let p be a prime number. Denote by Qp the field of
rational p-adic numbers, with the usual p-adic norm |.|p and valuation vp. Let Qp

be the algebraic closure of Qp, and Cp the topological closure of Qp with respect
to |.|p.

Definition 2.1. Let the p-adic logarithm logp be given by

logp(1 +X) =
∞∑
i=1

(−1)i+1Xi

i

The series has a radius of convergence of 1, so the domain of logp(x) is T = {a ∈
Cp | |x− 1|p < 1}.

Proposition 2.2. Let x ∈ C×p . Then we can write

x = prωt

Where r is some rational number, ω is a root of unity of order prime to p, and
t ∈ T .

Proposition 2.3. Let x = prωt as defined by the previous proposition. Then

logp(x) := logp(t)

is the unique extension of logp from T onto C×.

Remark 2.4. The above logarithm commutes with Frobenius endomorphism, which
maps elements in a commutative ring of characteristic p to their p-th powers.

Definition 2.5. A Dirichlet character, χ, is a multiplicative homomorphism χ :
(Z/kZ)× → C×.

As χ can also be considered as a multiplicative homomorphism on (Z/mZ)× if
k|m, let the minimal of such k be called the conductor of χ, denoted fχ.

Definition 2.6. Let χ be a Dirichlet character. Its conjugate character, χ, is
defined as

χ(a) =
{ 1

χ(a) if χ(a) 6= 0;
0 otherwise.
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The L–series attached to a Dirichlet character χ is given by

L(s, χ) =
∞∑
n=1

χ(n)
ns

if <(s) > 1.
Apart from a pole at s = 1 when χ is the trivial character, this series can

be analytically continued to the entire complex plane. This continuation is the
Dirichlet L-function.

There are several approaches to construct the p-adic analogue of Dirichlet L-
functions. One method relies on the fact that L(s, χ) is algebraic for negative
integers s, and these values can be considered as elements of Qp. From this one
can look for a p-adic function that obtains the same values at negative integers
as L(s, χ), and with some modifications, such a function can be found and proven
to be unique. This function is the p-adic L-function Lp(s, χ). A more detailed
explanation can be found in [5, Section 3] and [7, Chapter 5].

There is a formula for evaluating Lp(1, χ), given by [5, Section 5 Theorem 3]

Theorem 2.7. Let χ be an even character with conductor fχ, and ζ a primitive
fχ-th root of unity. If χ is the trivial character then Lp(s, χ) has a pole at s = 1.
Otherwise

Lp(1, χ) = −
(

1− χ(p)
p

) ∑fχ
a=1 χ(a)ζa

fχ

fx∑
i=1

χ(i) logp(1− ζ−i)

Note that
∑fχ
a=1 χ(a)ζa is a Gauss sum.

This formula can be used for our calculations. A key problem in using the above
formula is the need for the computation of p-adic logarithms of arbitrary elements
- the straight forward power series is only valid for 1-units, ie. elements in 1+pZK .
The naive use of Proposition 2.3 would require to extend the field which we want
to avoid.

Algorithm 2.8. Computation of the p-adic logarithm of an arbitrary element x.
Input: x

Output: log x
1: k := vp(x) and y := π−kx
2: z := yn−1 where n := #F for the residue class field F
3: use the power series to compute log z and log y := 1/(n− 1) log z
4: ε := πe/p
5: return log x = k

e log ε+ log y

Theorem 2.9. The above code returns the same result as Proposition 2.3.

Proof. We know that x can be rewritten as prωt. Let e be the ramification index
of Qp(x)/Qp, and the valuation of x be v. Then we have r = v

e .
Let π be a uniformising element of Qp(x), that is, an element with valuation 1.

Then πe = pε, for some unit ε. Using this fact we compute ε. Now, we redefine x
so that

x = p
v
e ωtπ−

v
e = p

v
e t(pε)−

v
e = tε−

v
e

Taking logp of both sides, we get
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logp(x) = logp(tε
− ve ) = logp(t)−

v

e
logp(ε)

Since logp(x) = logp(t), we need to add a correction factor of v
e logp(ε) to return

the correct value, and this completes our algorithm. �

Recall that this logarithm commutes with the Frobenius endomorphism. This
allows faster computations of the terms logp(1−ζ−i) by making use of the Frobenius
endomorphism (where applicable) to reduce the number of logarithms calculated,
which is in general computationally tedious.

We need to construct a field that enables us to compute Lp(1, χ) . Since the
calculation requires two roots of unity of possibly different degrees we must perform
the computation in a cyclotomic extension field of Qp. According to Theorem 2.7
a primitive fχ-th root of unity, ζ, is required. In addition to this, to be able to
construct the Dirichlet character χ, we also need a primitive l-th root of unity,
where l is the order of χ.

We start with Qp. In order to generate both ζ and χ we need a root of unity of
order lcm(fχ, l). We can write

lcm(fχ, l) = pro

where p and o are relatively prime. To obtain the necessary extension field, we first
take an unramified extension on Qp to obtain Qp[ζo], then take a ramified extension
on this new field to obtain one with the necessary root of unity.

We have essentially two natural options when constructing the unramified ex-
tension of Qp of degree o. In one approach we can take the defining polynomial of
the default degree o extension of the residue class field of Qp. In this case we have a
defining polynomial with small coefficients, but no natural o-th root of unity. This
is overcome by performing Hensel lifting to obtain Qp[ζo], a method analogous to
using the Newton-Raphson method to find roots of polynomials in R.

Alternatively, instead of using the default defining polynomial for the residue
class extension, we can use an appropriate p-adic factor of the o-th cyclotomic
polynomial. This construction provides us with ζo as the default element of the
unramified extension, but with a defining polynomial with many terms and large
coefficients. It does, however, allow faster Frobenius automorphisms. It is not clear
at this point in time which of the two approaches is faster.

We now estimate the complexity of the computation. Suppose that df =
Qp[ζfχ ]/Qp and d = Qp[ζn, ζfχ ]/Qp. Using classical algorithms for multiplication
and division, we find that to perform the logarithms required with correct value
modulo pρ would require performing ρ calculations at a complexity in the order of
d2
fρ

2. The remaining multiplication has complexity of d2ρ2 log2 p, giving an overall
complexity of order fχρ3d2.

3. An Alternative Approach

In this section we provide an alternate approach to compute Lp(1, χ), based on
a formula from [3, Proposition 11.3.8].

Theorem 3.1. Let χ be a primitive character of conductor fχ, let m = lcm(fχ, qp),
where qp = 4 if p = 2 and p otherwise. If χ is a non trivial character then Lp(1, χ)
is given by the following formula
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Lp(1, χ) =
∑

0≤a<m
(a,p)=1

χ(a)

− logp(a)
m

+
∑
j≥1

(−1)j
mj−1

aj
Bj
j


where Bj is the j-th Bernoulli Number.

Proposition 3.2. The infinite sum∑
j≥1

(−1)j
mj−1

aj
Bj
j

converges with respect to |.|p

Proof. Let sj be the j-th term of the sequence. Since |.|p is a non-Archimedian
norm it is sufficient to show that limj→∞ sj = 0.

Consider the valuation of the individual terms in sj . Since (a, p) = 1,

vp(sj) = vp(mj−1) + vp(Bj)− vp(j)

We want to show that vp(sj) → ∞ as j → ∞. We do this by finding the upper
bound of vp(sj), using a result from [7, Theorem 5.10].

Lemma 3.3 (von Staudt-Clausen theorem). Let Bj be a Bernoulli number. Then
the fractional part of Bj is given by ∑

(p−1)|j

1
p

Suppose vp(m) = r. Then vp(mj−1) = r(j − 1). By the above lemma, vp(Bj) ≥
−1, since Bj contains at most a single factor of p in its denominator. Also, vp(j) ≤
log j
log p , so we have

vp(sj) ≥ r(j − 1)− log j
log p

− 1

From here is is clear that vp(sj) → ∞ as j → ∞, and |sj |p → 0, which completes
our proof. �

Corollary 3.4. For the infinite sum to have the correct value modulo pρ, we need
to sum up to the smallest j such that

(3.1) ρ < vp(m)(j − 1)− log j
log p

− 1

To be able to compute using this formula we need to know how many terms
of the infinite sum we need to calculate to guarantee correctness up to a given
precision.

Proposition 3.5. For sufficiently large ρ calculating the partial sum of sj up to
j = 2ρ+1

vp(m) + 1 provides the correct result modulo pρ.
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Proof. We need to show j = 2ρ+1
vp(m) + 1 satisfies inequality 3.1. Substituting the

value for j we obtain

vp(m)(j − 1)− log j
log p

− 1− ρ

=ρ−
log( 2ρ+1

vp(m) + 1)

log p

≥ρ− log(2ρ+ 2)
log p

since vp(m) ≥ 1

=ρ− log 2 + log(ρ+ 1)
log p

Consider this as a function in ρ. As it is monotonically increasing for ρ > 0 then it
is positive when ρ > k for some integer k, showing that it satisfies the condition in
Corollary 3.4. �

Remark 3.6. In the case of p = 2 and 3, k = 3 and 1 respectively. For all other
primes p, k ≤ 0, so j = 2ρ+1

vp(m) + 1 could be used for almost all cases.
In practice, one can achieve a better bound on j by solving the inequality 3.1

for the particular m, p and ρ values.

We can thus compute Lp(1, χ) using this formula. The calculation is mostly
straightforward, with some caching of repeated terms such as the logarithms and
Bernoulli numbers to speed up calculation.

Again, using classical algorithms for multiplication and division, we can analyse
the complexity of the computation. To compute the infinite sum with correct
value modulo pρ we need to perform at most 2ρ + 2 additions, each of which has
complexity of roughly ρ2, giving a complexity of the order of ρ3 for this part. There
are lcm(fχ, qp) additions in the formula, each of order ρ, giving a total complexity
of order lcm(fχ, qp)ρ3.

Comparing the complexities of the two approaches, we see that in addition to the
common ρ3 term, the method based on Theorem 2.7 is dependent on fχd

2 whilst
the approach based on Theorem 3.1 is related to lcm(fχ, qp). Thus in the case
where the degree of the p-adic field constructed is small, the first approach will be
faster, the second method would be superior if p is a factor of fχ. In general no
single approach is superior, and we shall see some examples of these later.

4. p-adic Regulator

Suppose K is a totally real number field, with field degree n. Then the structure
of the unit group of K, UK, can be represented as Ck × Zn−1, where Ck is a finite
cyclic group.

A system of fundamental units of UK is a set of units that form a basis of
UK, modulo torsion. Let u1, . . . , un−1 be such a system. Let σ1, . . . , σn be the n
embeddings of K into R. Then for any rational integer such that logp(un) 6= 0, the
p-adic regulator of K, Rp, is defined to be

(n logp(un))−1 det[logp |σj(ui)|]ij
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Since the embeddings do not affect the rational number un, this simplifies to the
following expression

1
n

det


log |σ1u1| · · · log |σnu1|

...
. . .

...
log |σ1un−1| · · · log |σn−1un−1|

1 · · · 1


Thus, for any system of independent units we can easily compute the p-adic

regulator from there. All we need are the different p-adic embeddings, but they
are either trivial to compute using standard techniques for p-adic factorisation
or root finding, or else, make use of the Q-automorphisms of the field and one
fixed p-adic embedding. We note that typically the units are not represented with
respect to a fixed basis of the field, but as power products ui =

∏r
j=1 α

ei,j
j for some

(small) elements αi and some (large) exponents ei,j ∈ Z. While the computation
of logarithms of power products is of course trivial, we note that this requires the
computation of logarithms of non-units; although ui is a unit, the αi are not.

Therefore to get the valuation of the p-adic regulator we need a basis for some p-
maximal subgroup of the unit group, ie. we need V < U such that (U : V ) <∞ and
p 6 |(U : V ). Using saturation techniques such a group V can be computed from any
subgroup Ṽ of full rank. In particular for abelian fields of moderate conductor, we
can obtain such a group Ṽ from the cyclotomic units of the surrounding cyclotomic
field, thus to fields of degree too large for the direct computation using class groups.

5. Main result

There is a link between the p-adic L-function and the p-adic regulator of a
number field [7, Theorem 5.24].

Definition 5.1. Let X be a finite group of Dirichlet characters. Denote by f the
lowest common multiple of the conductors of all the characters in X. Let H be the
intersection of the kernels of all characters in X, and K the fixed field H in Q[ζf ].
Then X is the set of Dirichlet characters corresponding to the field K.

Corollary 5.2. X is a subgroup of the characters of Gal(Q[ζf ]/Q). In fact, X is
isomorphic to Gal(K/Q), and the degree of K/Q is the order of X.

Theorem 5.3. Suppose K is a totally real abelian number field, with discrimi-
nant D, regulator Rp and class number h. Let its group of corresponding Dirichlet
characters be X. Then

(5.1)
2n−1hRp√

D
=
∏
χ∈X
χ 6=1

(
1− χ(p)

p

)−1

Lp(1, χ)

where n is the field degree of K, up to choice of sign for
√
D.

For each required component in the formula we have already highlighted their
computations in the earlier sections. However, we still need to find X to be able
to evaluate Lp(1, χ). We start by computing the minimal f so that K ⊆ Q[ζf ].
If K is already a cyclotomic field, where we simply take all even characters of
conductor f that are non trivial. Note: since f , the conductor, can be large in
relation to the degree, we do not want to compute Q(ζf ) explicitly. Also, since
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we start with K, we do not have any embedding into Q(ζf ) explicitly, so we want
to compute X without explicitly using the full cyclotomic field. Otherwise, we
start with characters of conductor f with order deg(K/Q). Any further restrictions
depends on the field in question, in particular the value of f .

If the field is cyclic and f is prime then the characters required are only the
primitive ones. However, if f is not prime, then the primitive elements would
correspond to the different fields with the same f . In this case we would need to
be able to select the ones corresponding to the field in question.

We start with Gal(Q[ζf ]/Q), which is isomorphic to (Z/fZ)×. Let U =
Gal(Q[ζf ]/K). Now consider the projection

Gal(Q[ζf ]/Q)→ Gal(K/Q)

The kernel of the projection is U , and the characters corresponding to K should
have the preimage of U in their kernel.

From class field theory,
Gal(K/Q) ∼= Clf/H

where Clf is the ray class field of modulo f , and H is 〈NF/K(a)〉. With knowledge
of Clf and Gal(K/Q), we can compute H by taking the norm of primes until we
reach the appropriate size for Clf/H. From here we can find the generators of the
kernel of H, under the projection stated earlier. By testing the characters on the
generators we restrict our set of characters to only those that are trivial on the
generators.

Since we can compute every part of equation 5.1 except h, we can easily compute
h using this formula and find its valuation, which will give the p-part of h.

In the classical algorithm to compute the entire class group, the unconditional
verification of the computation requires O(

√
|D|) [2, Algorithm 6.5.6] steps. The

proposed algorithm requires the computation of approximately f steps. By the
conductor-discriminant formula [6, Chapter VII 11.9], we know that for a number
field K with prime degree n, D is of the magnitude fn−1. This means that theo-
retically the proposed algorithm would be faster than the existing algorithms for
number fields of degree 4 or higher, with improvement increasing for larger n. When
only the p-part of the class group is required this would yield a faster computation.

6. Examples

All calculations were performed in Magma V2.18-3, with default precision of 20.
ζ values are given with a precision of 10 to simplify their expressions.

Example 1 Let K = Q[ξ] where ξ is a root of x3 − 273x −
1729, and p = 3. We find that K is a subfield of Q[ζ819], with
ζ = (4*$.1^5 - 2*$.1^4 + 2*$.1^3 + 2*$.1^2 + 3*$.1 + 4)*$.1 + 4*$.1^5
- 2*$.1^4 + 2*$.1^3 + 2*$.1^2 + 3*$.1 + 4. This calculations yields a zeta
function value of -126233993*3 and a p-adic regulator value of -1001*3^2. The
valuation of the class number is 2, which matches with h = 9.

Example 2 Let K = Q[ξ] where ξ is a root of x5 − x4 − 312x3 + 531x2 +
9397x + 10933, and p = 5. We find that K is a subfield of Q[ζ781], with
ζ = 17*$.1^4 - 35*$.1^3 - 4*$.1^2 - 42*$.1 - 16. This calculations yields
a zeta function value of -5069186272204*5^5 and a p-adic regulator value of
3243922906*5^8. The valuation of the class number is 1, which matches with
h = 5.
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The following are a table of the valuations of h of different number fields K =
Q[ξ], where ξ is a root of the polynomial f(x). Timings for the calculation using
the method from Theorem 2.7 to calculate Lp(1, χ) are given under the label I
(Iwasawa), and C (Cohen) when Theorem 3.1 is used instead. Timings are given
in seconds.

f(x) p vp(h) I C h
x3 − x2 − 72x− 209 11 0 0.718 1.264 3

x5 − 341x3 − 2046x2 + 6820x+ 29667 5 1 1.342 0.936 5
x3 − x2 − 184x+ 512 3 1 2.012 0.499 3
x3 − x2 − 292x− 1819 7 1 23.088 2.917 7

x5 − 410x3 − 205x2 + 39360x+ 3649 5 1 1.170 5
x5 − x4 − 76x3 + 359x2 − 437x+ 155 11 1 0.983 1.451 11

x5 + x4 − 508x3 − 6965x2 − 33107x− 52571 11 1 17.722 9.032 55
x3 − 2109x− 37259 3 3 2.419 27

Now suppose f(x) = x5 − x4 − 376x3 − 3877x2 − 13445x − 15271. Existing
algorithm computes the class number of K as 16 in 2.356 seconds. Both p-adic
methods verify that the 2-part of the class number is the same, with the Cohen
method returning a result in 1.732 seconds, a small improvement over the existing
algorithm.

References

[1] Aoki, Miho; Fukuda, Takashi, An algorithm for computing p-class groups of abelian number

fields. Algorithmic number theory, 5671, Lecture Notes in Comput. Sci., 4076, Springer, Berlin,
2006

[2] Cohen, Henri, A course in computational algebraic number theory Graduate Texts in Mathe-

matics, 138. Springer-Verlag, Berlin, 1993.
[3] Cohen, Henri, Number theory. Vol. II. Analytic and modern tools. Graduate Texts in Mathe-

matics, 240. Springer, New York, 2007.

[4] Gras, Georges; Gras, Marie-Nicole, Calcul du nombre de classes et des unités des extensions
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